An Adaptive Algorithm for the Time Dependent Transport Equation with Anisotropic Finite Elements and the Crank-Nicolson Scheme
نویسندگان
چکیده
The time dependent transport equation is solved with stabilized continuous, piecewise linear finite elements and the Crank-Nicolson scheme [1]. Finite elements with large aspect ratio are advocated in order to account for boundary layers. The error due to space discretization has already been studied in [2]. Here, the error due to the use of the Crank-Nicolson scheme is taken into account. Anisotropic a priori and a posteriori error estimates are proved. The a posteriori upper bound is obtained using a quadratic reconstruction in time as in [3]. The quality of the error estimator is first validated on non adapted meshes and constant time steps. An adaptive algorithm in space and time is then proposed, with goal to build a sequence of anisotropic meshes and time steps, so that the final error is close to a preset tolerance. Numerical results on adapted, anisotropic meshes and time steps show the efficiency of the method.
منابع مشابه
A Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method
In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...
متن کاملAn implicit finite difference scheme for analyzing the effect of body acceleration on pulsatile blood flow through a stenosed artery
With an aim to investigate the effect of externally imposed body acceleration on two dimensional,pulsatile blood flow through a stenosed artery is under consideration in this article. The blood flow has been assumed to be non-linear, incompressible and fully developed. The artery is assumed to be an elastic cylindrical tube and the geometry of the stenosis considered as time dependent, and a co...
متن کاملAdaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation
An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...
متن کاملAn Anisotropic Error Estimator for the Crank--Nicolson Method: Application to a Parabolic Problem
In this paper we derive two a posteriori upper bounds for the heat equation. A continuous, piecewise linear finite element discretization in space and the Crank-Nicolson method for the time discretization are used. The error due to the space discretization is derived using anisotropic interpolation estimates and a post-processing procedure. The error due to the time discretization is obtained u...
متن کاملA numerical investigation of a reaction-diffusion equation arises from an ecological phenomenon
This paper deals with the numerical solution of a class of reaction diffusion equations arises from ecological phenomena. When two species are introduced into unoccupied habitat, they can spread across the environment as two travelling waves with the wave of the faster reproducer moving ahead of the slower.The mathematical modelling of invasions of species in more complex settings that include ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 75 شماره
صفحات -
تاریخ انتشار 2018